

CEN/TC 127/WG 8 CEN/TC 127/WG 8 - Fire Safety Engineering Email of secretary: Secretariat:

WG8 N0047 UNIZAWI proposal Delft Part of UNIZAFIREFF project

Document type: Other committee document

Date of document: 2015-03-23

Expected action: INFO

Background:

Committee URL: http://cen.iso.org/livelink/livelink/open/centc127wg8

Department of Fire Engineering

Faculty of Security Engineering University of Zilina

WI Proposal: Economic assessment of fire protection measures

Ing. Vladimir MOZER, PhD.

TC 127 / WG 8 FSE - Delft meeting

Objective and introduction

The aim of the proposed WI is to provide means of objective assessment of fire safety design economic implications.

What is the highest level of safety which can be achieved at a given level of costs.

Especially useful when multiple design alternatives are considered – avoid "cutting corners" by spending funds efficiently.

Combination of fire safety engineering output – extent of fire at given level of fire protection (costs) vs extent of damage and threat caused by the fire.

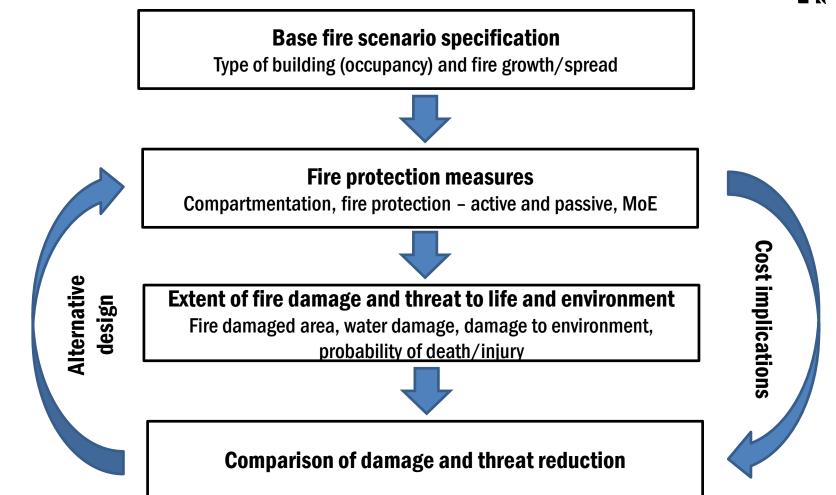
Project background

Long-time topic of interest for all stakeholders.

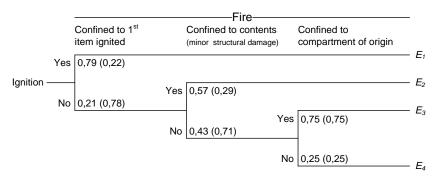
Numerous studies and publications (The value of fire protection in buildings, Economics of fire protection, etc.)

UNIZA currently working on this project under a national grant scheme funding.

Approach – Keep it simple and compatible with existing fire engineering tools.


Addition of a set of economic assessment tools on top of what is already there, i.e. no reinventing of the wheel.

Model framework description


Example of application – property protection

Probability of fire starting (ignition):

Industrial - 0,096
Office - 0,052
Shop - 0,132
From PD 7974-7

Event tree analysis diagram

values in brackets denote Unsprinklered scenario

Individual outcome probabilities

Fire scenario	Extent of damage	Outcome frequency		
	=xtone or dumage	Sprinklered	Unsprinklered	
Confined to 1 st item E_1	max. 5m ²	0,790	0,220	
Confined to contents E_2	50% of compartment	0,120	0,226	
Confined to compartment of origin E_3	100% of compartment	0,068	0,415	
Spread beyond comparment of origin <i>E</i> ₄	2x compartment area	0,023	0,139	

Example of application – property protection

Occupancy	Fire st	arting	E1		E2		E3		E4	
	Р	0	Р	0	Р	0	Р	0	Р	0
Sprinklered										
Industrial	9,6.10-2	10	7,5.10 ⁻²	13	1,1.10-2	87	6,5.10 ⁻³	155	2,2.10 ⁻³	464
Office	5, 5.10 ⁻²	18	4,4.10-2	23	6,6.10 ⁻³	151	3,7.10 ⁻³	268	1,2.10-3	803
Shop	1,3.10-1	8	1,0.10 ⁻¹	10	1,6.10-2	63	8,9.10 ⁻³	112	3,0.10 ⁻³	336
Unsprinklered										
Industrial	9,5.10-2	10	2,1.10-2	48	2,2.10 ⁻²	46	4,0.10 ⁻²	25	1,3.10 ⁻²	76
Office	5,5.10 ⁻²	18	1,2.10-2	82	1,2.10-2	80	2,3.10 ⁻²	44	7,6.10 ⁻³	131
Shop	1,3.10 ⁻¹	8	2,9.10 ⁻²	34	3,0.10-2	33	5,5.10 ⁻²	18	1.8.10 ⁻²	55
Fire scenario			Extent of damage							
		Confined to 1 st item E_1			max. 5m ²					
The section of the section of		Confined to contents E_2			50% of compartment (500m²)					
ildings in Furanc and		Confined to compartment of origin E_3			100% of compartment (1000m²)					
uildings in Europe and nerica have an expected		Commea t			•					

Example of application – property protection

Likely total and yearly loss for most probable fire outcomes

Occupancy	Value density*	Likely damage	Likely loss	Occurence interval	Loss per year
	[EUR/m ²]	[m²]	[EUR]	[y]	[EUR/y]
Sprinklered	·	*			
Industrial	300	5	1500	13	115
Office	100	5	500	23	22
Shop	200	5	1000	10	100
Unsprinklered					
Industrial	300	1000	300000	25	12000
Office	100	1000	100000	44	2272
Shop	200	1000	200000	18	11100

^{*}Fabricated values – for demonstration only

Assessed against costs of fire protection per year *Sprinkler system 2000 Eur/year

Thank you for your attention!

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0727-12.