

ISO/TC 92/SC 4 Fire safety engineering

Email of secretary: <u>benoit.smerecki@afnor.org</u> Secretariat: AFNOR (France)

WG1 Economic assessment of fire safety design as part of fire safety engineering

Document type:	Other meeting document
Date of document:	2015-04-20
Expected action:	INFO
Background:	Please find enclosed a presentation made by Vladimir MOZER at the last SC4/WG 1 meeting held in Coimbra (Portugal) on 13 th April 2015.
Committee URL:	http://isotc.iso.org/livelink/livelink/open/tc92sc4

Department of Fire Engineering

Faculty of Security Engineering University of Zilina

Economic assessment of fire safety design as part of fire safety engineering

Ing. Vladimir MOZER, PhD.

ISO TC 92 / SC4 FSE - Coimbra meeting 13.4.2015

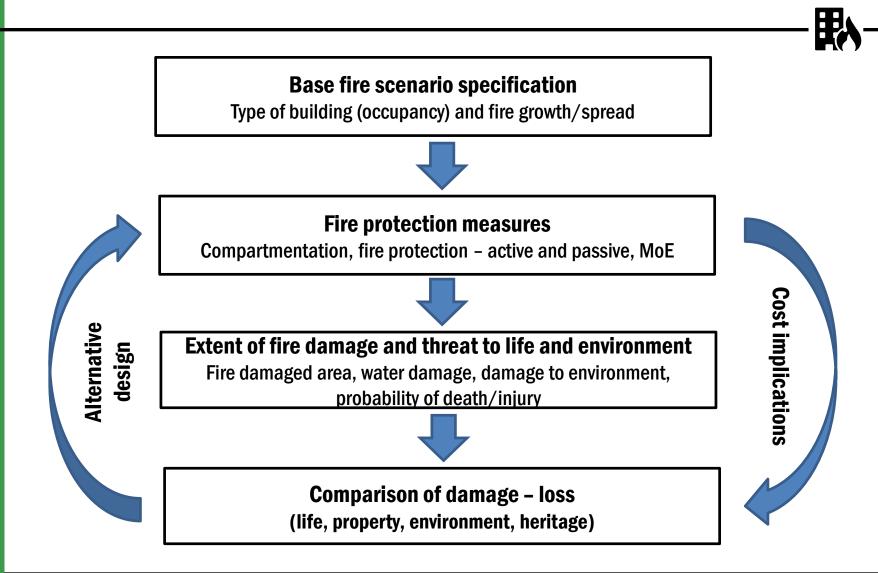
14.4.2015

Objective and introduction

The aim of the proposed WI is to provide means of objective assessment of fire safety design economic implications.

- What is the highest level of safety which can be achieved at a given level of costs.
- Especially useful when multiple design alternatives are considered avoid "cutting corners" by spending funds efficiently.

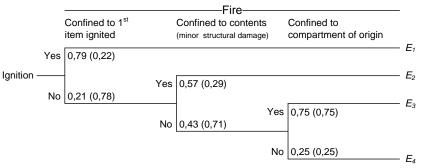
Combination of fire safety engineering output – extent of fire at given level of fire protection (costs) vs extent of damage caused by the fire (loss).



Long-time topic of interest for all stakeholders. Numerous studies and publications (The value of fire protection in buildings, Economics of fire protection, etc.) UNIZA currently working on this project under a national grant scheme funding. Approach – Keep it simple and compatible with existing fire engineering tools. **Creation of a set of fire engineering and economic**

assessment tools, i.e. no reinventing of the wheel.

SUCK UNIVER


Example of application – property protection

Probability of fire starting (ignition):

Industrial – 0,096 *Office* – 0,052 *Shop* – 0,132 From PD 7974-7

Event tree analysis diagram

values in brackets denote Unsprinklered scenario

Individual outcome probabilities

Fire scenario	Extent of damage	Outcome frequency		
	go	Sprinklered	Unsprinklered	
Confined to 1^{st} item E_1	max. 5m ²	0,790	0,220	
Confined to contents E_2	50% of compartment	0,120	0,226	
Confined to compartment of origin E_3	100% of compartment	0,068	0,415	
Spread beyond comparment of origin <i>E</i> ₄	2x compartment area	0,023	0,139	

Example of application – property protection (based on most probable outcome)

Occupancy	Fire starting		E1		E2	E2		E3		E4	
	Р	0	Р	0	Р	0	Р	0	Р	0	
Sprinklered											
Industrial	9,6.10 ⁻²	10	7,5.10 ⁻²	13	1,1.10 ⁻²	87	6,5.10 ⁻³	155	2,2.10 ⁻³	464	
Office	5, 5.10 ⁻²	18	4,4.10-2	23	6,6.10 ⁻³	151	3,7.10 ⁻³	268	1,2.10 ⁻³	803	
Shop	1,3.10 -1	8	1,0.10-1	10	1,6.10 ⁻²	63	8,9.10 ⁻³	112	3,0.10 ⁻³	336	
Unsprinklered											
Industrial	9,5.10 ⁻²	10	2,1.10 ⁻²	48	2,2.10 ⁻²	46	4,0.10 ⁻²	25	1,3.10 ⁻²	76	
Office	5,5.10 ⁻²	18	1,2.10 ⁻²	82	1,2.10 ⁻²	80	2,3.10 ⁻²	44	7,6.10 ⁻³	131	
Shop	1,3.10 ⁻¹	8	2,9.10 ⁻²	34	3,0.10 ⁻²	33	5,5.10 ⁻²	18	1.8.10 ⁻²	55	
		- Fire scenario				Extent of damage					
		Confined to 1^{st} item E_1				max. 5m ²					
uildings in Europe and		Confined to contents E_2				50% of compartment (500m ²)					
Buildings in Europe and Imerica have an expected		Confined to compartment of origin E_3				100% of compartment (1000m²) 🛛 🗲					
fespan of 50-70 years.		Spread beyond comparment of origin <i>E</i> 4				2x compartment area (2000m ²)					

Example of application – property protection (based on most probable outcome)

Occupancy Value density* Likely **Likely loss Occurence** Loss per damage interval year [EUR/m²] [m²] [EUR] [y] [EUR/y] **Sprinklered** Industrial 300 1500 115 5 13 Office 22 100 5 500 23 Shop 200 5 1000 10 100 Unsprinklered Industrial 300 1000 300000 25 12000 100 1000 100000 Office 44 2272 Shop 200 1000 200000 18 11100

Likely total and yearly loss for most probable fire outcomes

*Fabricated values – for demonstration only

Assessed against costs of fire protection per year *Sprinkler system 2000 Eur/year

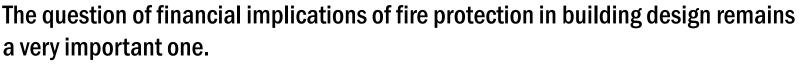
Example of application – property protection (based on weighed mean of outcomes)

	L,	utcome probability			• •
	<i>S</i> _{d, E/} - e	xpected fire damage	ed area for <i>i</i> -th	outcome scena	rio E _i (Table on S
Occupancy		$rac{F_{ ext{E}i}.S_{ ext{d,E}i}}{O_{ ext{E}i}}$			
	E1	E2	E3	E4	[m ² .year ⁻¹]
Sprinklered					
Industrial	3,04.10-1	6,90.10-1	4,39.10-1	9,91.10-2	1,53
Office	1,72.10-1	3,97.10-1	2,54.10-1	5,73.10-2	0,88
Shop	3,95.10-1	9,52. 10-1	6,07.10-1	1,37.10-1	2,09
U nsprinklered					
Industrial	2,29.10-2	$2,46.10^{+0}$	$1,66.10^{+1}$	3,66.10+0	22,7
Office	1,34.10-2	$1,41.10^{+0}$	9,43.10 ⁺⁰	$2,12.10^{+0}$	13,0
Shop	3,24.10-2	3,42.10+0	$2,31.10^{+1}$	5,05.10+0	31,6

WI Proposal: Assessment of fire protection measures economic efficiency

 S_{d}

Comparison of expected yearly fire loss


	Δ.
	y

Occupancy	Value density*	1	rly fire damage ario [m ⁻² .year ⁻¹]	Expected yearly fire loss b on scenario [€.year ⁻¹]		
	[€.m ⁻²]	most likely	weighed mean	most likely	weighed me	
Sprinklered						
Industrial	300	0,39	1,53	117	459	
Office	100	0,22	0,88	22	88	
Shop	200	0,5	2,09	100	418	
Unsprinklered						
Industrial	300	40,0	22,7	12000	6810	
Office	100	22,7	13,0	2270	1300	
Shop	200	55,6	31,6	11120	6320	

*Fabricated values – for demonstration only

Conclusion

If no legal requirements exist and there is lack of financial substantiation, the stakeholder is very likely do decline an inclusion of a fire protection system in the building design.

On the other hand if sufficient and convincing evidence is provided that a particular system brings financial benefits in the form of significant potential loss reduction, the fire protection system should be included even if no legal requirement exists.

This is particularly true when Fire safety engineering is used in the design process.

Thank you for your attention!

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0727-12.